【也曾闪耀】中国古代数学曾有的成就

从万物皆数的角度看,中国是四大古文明,史上不可能没有高等数学的支撑,差的只是由“术”上升为“道”的大环境,而且儒家胜了墨家,之后的腐儒伪儒又压制许多所谓的“奇淫技巧”,但仔细去看,历史上中国从来不缺数学方面的“闪耀”。


古代中国科技有多高?——先看看数学的十大发明==>

众所周知,造纸术、印刷术、指南针和火药并列为中国的“四大发明”,它已经成为中华文明的一种标志。但也毋庸置疑,我国古代的重要发明创造远不止于此。古代中国人还有哪些重要的科技发明创造呢?中国科学院自然科学史研究所编写的《中国古代重要科技发明创造》一书详细地回答了这一问题。书中分门别类共计88项发明创造成果,展示了我国古代丰富、先进的科技水平。

古代中国科技有多高?——先看看数学的十大发明

图一 四大发明

其中,有十项属于数学方面的发明创造,依照时间顺序,它们分别是十进位值制与算筹记数法,盈不足术,勾股容圆,线性方程组及解法,中国珠算,增乘开方法,垛积术,天元术,一次同余方程组解法和四元术。

古代中国科技有多高?——先看看数学的十大发明

图二 古代数学

1.十进位值制与算筹记数法

我国是世界上最早使用十进制计数的国家之一,商代甲骨文中已有十进制计数。在人类历史上,曾出现过五进制、十二进制、十六进制、二十进制、六十进制等,但除了计时和角度仍保留着六十进制外,其他进制都被十进制所取代了。数字写法有“顺序”,从左到右,或从右到左,或从上到下,于是同一个计数符号写在不同位置上,其数值大小也不相同,这就是位值制。《孙子算经》记载:凡算之法,先识其位,一从十横,百立千僵,千十相望,万百相当。中国古代用算筹记数,进行加减乘除的运算,唐代末年,算筹的乘除法被改进,到宋代产生算筹的乘除法歌诀。

古代中国科技有多高?——先看看数学的十大发明

图三 算筹

古代中国科技有多高?——先看看数学的十大发明

图四 计算

2.《九章算术》与盈不足术

《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典着作,约成书于东汉初年(前1世纪),一直流传至今,是中国现有传本中最古老的数学着作。全书采用问题集的形式编写,共收有246个数学问题,分做9大类,就是“九章”。其内容涉及算术、初等代数、初等几何等各个方面。其中,最着名的便是分数运算法则和双假设法(盈不足术)等。

古代中国科技有多高?——先看看数学的十大发明

图五 九章算术

古代中国科技有多高?——先看看数学的十大发明

图六 盈不足术

3.《周髀算经》与勾股定理

西汉末年(约前2世纪)编纂的《周髀算经》,是我国最古老的一部古典数学着作。这部着作记录了我国古代早期的一些数学成果,其中提出勾股定理的特例,在赵爽的注释中给出了普遍形式和证明。

古代中国科技有多高?——先看看数学的十大发明

图七 勾股圆方图说

4.线性方程组及解法

我国是世界上最早提出联立方程式的国家。《九章算术》中关于多元一次方程组解法的记载比印度早400多年,比欧洲早1300多年;关于开平方、开立方以及一般二次方程的解法等在世界上也都是最早的。

古代中国科技有多高?——先看看数学的十大发明

图八 方程术

5.中国珠算

算盘是我国古代的一项伟大发明。我国的算盘是由古代的“算筹”演变而来的。16世纪明代中叶珠算术取代算筹术在全国得到普遍推广,论述算术的着作也随之产生,流行最广的珠算是1593年明代程大位所辑的《算法统宗》。由于珠算术用算盘演算,比筹算术用算筹演算简单方便,珠算口诀又便于记忆,因而在我国被普遍应用,同时也陆续传到了日本、朝鲜、印度、美国、东南亚等国家和地区,受到广泛欢迎。近来,美国和日本一些专家把我国的算盘尊称为新文化,并和指南针、造纸术、印刷术、火药并列,被誉为我国的第五大发明。

古代中国科技有多高?——先看看数学的十大发明

图九 算盘

6.贾宪三角与增乘开方法

现代初等数学中,二项式乘方展开是一种最基本的运算方法。二项式展开项系数,具有一定规律性,它是以组合数公式表示的,因此,在做二项式乘方展开时,只要记住这个规律,就可把各项直接求出来。我国是二项式乘方展开项系数规律性的最先发现国,这在世界数学历史上是一个重大的贡献。早在11世纪,我国北宋时期的数学家贾宪,在他注解的《九章算术》中总结了先秦到东汉初的数学成就,并对乘方展开方法进行了专门的研究和探讨,提出的“开方作法本源图”,被称为“贾宪三角”,比欧洲人所称的“巴斯卡三角”早600多年。

古代中国科技有多高?——先看看数学的十大发明

图十 贾宪三角

古代中国科技有多高?——先看看数学的十大发明

图十一 增乘开方法

7.《梦溪笔谈》与垛积术

垛积术解决的是等差数列求和问题。

古代中国科技有多高?——先看看数学的十大发明

图十二 垛积术

8.《测圆海镜》与天元术

天元就是未知数,天元术是列方程和解方程之法。

古代中国科技有多高?——先看看数学的十大发明

图十三 天元术

9.《数书九章》与大衍求一术

宋朝数学家秦九韶的求解一次同余式的“大衍求一术”,是数学史上的一项卓越成就。联立一次同余式问题最早见于《孙子算经》中的一个问题:“今有数不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”这就是着名的孙子问题。他的解法要用到求三个一次同余式的共同解。秦九韶在《数书九章》中首次对这一算法进行介绍,并把它推广到解决各种数学问题中去。他系统地提出求解一次同余组的一般计算步骤,正确而又严密。500年后,欧拉(1707~1789年)和高斯(1777~1855年)等人对联立一次同余式问题才进行了深人的研究。

古代中国科技有多高?——先看看数学的十大发明

图十四 秦九韶

10.《四元玉鉴》与四元术

1303年,元朝数学家朱世杰的《四元玉鉴》把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,这是世界上第一个提出多元高次方程解法的人。400多年后的1775年,法国人才提出同样的解法。

古代中国科技有多高?——先看看数学的十大发明

图十五 四元术

古代中国科技有多高?——先看看数学的十大发明

图十六 解法

中国古代科学技术是祖先留给我们的一份丰厚的科学遗产,它蕴藏在汗牛充栋的典籍之中,凝聚于物化了的、丰富多姿的文物之中,需要下一番发掘、整理、研究的功夫,才能揭示它的博大精深的真实面貌。中国人在研究自然并用于造福人类方面,很早而且在相当长的时间内雄居于世界之首,这是我们自豪的巨大源泉。


中国古代数学的发展史==>

谈起古代数学,很多人都知道古希腊曾在几何学中获得了伟大成就,但我们对中国古代数学曾经的历史却没那么了解。实际上,我国古代对于数学的研究也是非常深刻并且很辉煌的,对于中华民族乃至人类文明的发展都做出了很大贡献。下面,我们就把中国古代数学的发展分为五个时期,为大家简单介绍一下我们自己的数学发展历史。

数学的萌芽

我们的先民在从野蛮走向文明的漫长历程中,逐渐认识了数与形的概念。出土的新石器时期的陶器大多为圆形或其他规则形状,陶器上有各种几何图案,通常还有三个着地点,都是几何知识的萌芽。先秦典籍中有“隶首作数”、“结绳记事”、“刻木记事”的记载,说明人们从辨别事物的多寡中逐渐认识了数,并创造了记数的符号。殷商甲骨文(公元前14—前11世纪)中已有13个记数单字,最大的数是“三万”,最小的是“一”。一、十、百、千、万,各有专名。其中已经蕴含有十进位置值制萌芽。人们丈量土地面积,测算山高谷深,计算产量多少,粟米交换,制定历法,都需要数学知识。《周髀算经》载商高答周公问,提到用矩测望高深广远。相传西周初年周公(公元前11世纪)制礼,数学成为贵族子弟教育中六门必修课程——六艺之一。不过当时学在官府,数学的发展是相当缓慢的。

象牙算筹

春秋时期,随着铁器的出现,生产力的提高,中国开始了由奴隶制向封建制的过渡。新的生产关系促进了科学技术的发展与进步。此时王权衰微,畴人四散,私学开始出现。最晚在春秋末年人们已经掌握了完备的十进位置值制记数法,普遍使用了算筹这种先进的计算工具。人们已谙熟九九乘法表、整数四则运算,并使用了分数。

框架的确立

战国时期,各诸侯国相继完成了向封建制度的过渡。思想界、学术界诸子林立,百家争鸣,异常活跃,为数学和科学技术的发展创造了良好的条件。尽管没有一部先秦的数学著作留传到后世,但是,人们通过田地及国土面积的测量,粟米的交换,收获及战利品的分配,城池的修建,水利工程的设计,赋税的合理负担,产量的计算,以及测高望远等生产生活实践,积累了大量的数学知识。据东汉初郑众记载,当时的数学知识分成了方田、粟米、差分、少广、商功、均输、方程、赢不足、旁要九个部分,称为“九数”。九数确立了《九章算术》的基本框架。

刘邦利用推翻暴秦的农民起义,统一了中国,建立了汉朝,史称西汉。西汉政府与民生息,社会生产力得到恢复、发展,给数学和科学技术的发展带来新的活力,人们提出了若干算术难题,并创造了解勾股形、重差等新的数学方法。同时,人们注重先秦文化典籍的收集、整理。作为数学新发展及先秦典籍的抢救工作的结晶,便是《九章算术》的成书。《九章算术》(省称《九章》)是中国最重要的数学经典,它之于中国和东方数学,大体相当于《几何原本》之于希腊和欧洲数学。在世界古代数学史上,《九章》与《原本》像两颗璀灿的明珠,东西辉映。

《九章》之前还有一部《周髀算经》,它本是一部以数学方法阐述盖天说的天文著作,一般认为于公元前1世纪成书。卷上记载了商高答周公问,陈子答荣方问。前者有勾股定理的特例3^2+4^2=5^2,后者有用勾股定理及比例算法测太阳高远及直径的内容。《九章》集先秦到西汉数学知识之大成。据东汉末大学者郑玄(公元127—200年)引东汉初郑众(?—公元83年)说,西汉在先秦九数基础上又发展出勾股、重差两类数学方法。魏刘徽说:《九章》是由九数发展而来的,由于秦朝焚书而散坏。西汉张苍(?—公元前152年)、耿寿昌(公元前1世纪)收集秦火遗残,加以整理删补,便成为《九章算术》。方田章提出了完整的分数运算法则,各种多边形、圆、弓形等的面积公式;粟米章提出了比例算法;衰[cui崔]分章提出了比例分配法则;少广章给出了完整的开平方、开立方程序;商功章讨论各种立体体积公式及工程分配方法;均输章解决赋役中的合理负担,也是比例分配问题,还有若干结合西汉社会实际的算术杂题;盈不足章解决盈亏问题及可以用盈不足术解决的一般算术问题;方程章是线性方程组解法,并给出了正负数加减法则;勾股章由旁要发展而成,提出了勾股定理、解勾股形及若干测望问题的方法。全书以计算为中心,有90余条抽象性算法、公式,246道例题及其解法,基本上采取算法统率应用问题的形式。它的许多成就居世界领先地位,奠定了此后中国数学居世界前列千余年的基础。《九章》分类不甚合理,没有任何定义和推导,少数公式不准确,个别公式有错误,则是不容讳言的缺点。《九章》的框架、形式、风格和特点深刻影响了中国和东方的数学。

《九章算术》成书后,注家蜂起。《汉书·艺文志》所载《许商算术》、《杜忠算术》(公元前1世纪)估计为研究《九章》的作品。东汉马续、张衡、刘洪、郑玄、徐岳、王粲等通晓《九章算术》,或为之作注。这些著作都未传世,从后来刘徽(今山东邹平人,生卒不详)《九章算术注》所反映的信息看,这些研究基本上停留在归纳验证《九章算术》的正确性方面,理论上未能在《九章》基础上作出长足进步。

体系的建立

《九章算术》之后,中国的数学著述基本上采取两种方式:一是为《九章算术》作注;二是以《九章算术》为楷模编纂新的著作。经过两汉社会经济和科学技术的大发展,到魏晋,中国封建社会进入一个新的阶段,庄园农奴制和门阀士族占据了经济政治舞台的中心。思想文化领域中,儒家的统治地位被削弱,谶纬迷信和繁琐的经学退出历史舞台,代之以谈三玄——《周易》、《老子》、《庄子》为主的辩难之风。学者们通过析理,探讨思维规律,思想界出现了战国的百家争鸣以来所未有过的生动局面。与此相适应,数学家重视理论研究,力图把自先秦到两汉积累起来的数学知识建立在必然的可靠的基础之上。刘徽和他的《九章算术注》便是这个时代造就的最伟大的数学家和最杰出的数学著作。大约与刘徽同时或稍前,有赵爽(又名婴,字君卿,生卒不详,估计是三国吴人)的《周髀算经注》,其可观者为“勾股圆方图”,用600余字概括了两汉以来勾股算术的成果。

刘徽《九章算术注》作于魏景元四年(公元263年),原十卷。前九卷全面论证了《九章》的公式、解法,发展了出入相补原理、截面积原理、齐同原理和率的概念,在圆面积公式和锥体体积公式的证明中引入了无穷小分割和极限思想,首创了求圆周率的正确方法,指出并纠正了《九章》的某些不精确的或错误的公式,探索出解决球体积的正确途径,创造了解线性方程组的互乘相消法与方程新术,用十进分数逼近无理根的近似值等,使用了大量类比、归纳推理及演绎推理,并且以后者为主。第十卷原名重差,为刘徽自撰自注,发展完善了重差理论,此卷后来单行,因第一问为测望一海岛的高远,名之曰《海岛算经》。他还著有《九章重差图》一卷,已佚。刘徽生活在辩难之风兴起而尚未流入清谈的魏晋之交,受思想界“析理”的影响,对《九章算术》“析理以辞,解体用图”(《九章算术注·序》),并对各种算法进行总结分析,认为数学像一株枝条虽分而同本干的大树,发自一端,形成了一个完整的理论体系。刘徽博览群书,谙熟诸子百家,他不迷信古人,敢于创新,实事求是。对他未能解决的牟合方盖,坦诚直书,表示“以俟能言者”(《九章算术·少广章注》),表现了一位伟大学者寄希望于后学的坦荡胸怀。

《孙子算经》三卷,常被误认为春秋军事家孙武所著,实际上是公元400年前后的作品,作者不详。这是一部数学入门读物,给出了筹算记数制度及乘除法则等预备知识,其河上荡杯、鸡兔同笼等问题后来在民间广泛流传,“物不知数”题则开一次同余式解法之先河。张丘建(今山东人,生平不详)著的《张丘建算经》三卷,成书于北魏(5世纪下半叶)。此书补充了等差级数的若干公式,其百鸡问题是著名的不定方程问题,后世十分重视。

用多边形来逼近圆周计算圆周率

《缀术》包含了祖冲之(公元429—500年)和儿子祖暅之(一作祖暅,生平不详)的数学贡献。由于其内容深奥,隋唐算学馆学官读不懂,遂失传。据认为,将圆周率精确到八位有效数字、球体积的解决及含有负系数的二次、三次方程皆是其中的内容。祖冲之,字文远,祖籍范阳逎(今河北省涞水县)人。刘宋大明六年(公元462年)造大明历,使用岁差,改革闰制。他的改革遭到守旧派官僚戴法兴的反对,祖冲之不畏权势,据理驳斥,坚持了反对谶纬迷信,不虚推古人,实事求是的科学精神。他对机械深有研究,制造过水碓、水磨、指南车、千里船、漏壶等,并著《安边论》、《述异记》等。祖暅之,字景烁。从小爱好数学,巧思入神,极其精微。专心致志之时,雷霆不能入。有一次走路时思考问题,仆射徐勉迎面而来竟然没有发现,头撞到徐勉身上,徐勉唤他,他才知道撞了人。其父的《大明历》经他的努力在梁朝颁行。

北周甄鸾(今河北无极人,生卒不详)有三部数学著作传世,即《五曹算经》、《五经算术》、《数术记遗》。前二部内容浅近,无足道者。《数术记遗》一卷,传本题(东)汉徐岳撰、北周甄鸾注,近人多以为系甄鸾自撰自注,假托徐岳。书中记载了三种大数进位制及14种算法,其中珠算虽不同于元明的珠算盘,然开后者之先河,似无可疑。

隋唐是中国封建社会经济政治文化的鼎盛时期,然而数学上除天文历法研究中刘焯(公元544—610年)创造等间距内插公式(7世纪初)和僧一行(公元683—727年)创造不等间距内插公式(8世纪)外,几无创造,数学成就及理论水平远远低于魏晋南北朝。唐初王孝通(生卒不详)撰《缉古算经》一卷,解决了若干复杂的土方工程及勾股问题,且都用三次或四次方程解决,是为现存记载三次、四次方程的最早著作。

隋唐统治者在国子监设算学馆,置算学博士、助教指导学生学习。唐李淳风等奉敕于显庆元年(公元656年)为《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《夏侯阳算经》、《缀术》、《张丘建算经》、《五曹算经》、《五经算术》、《缉古算经》等十部算经作注,作为算学馆教材,这就是著名的《算经十书》,该书是中国古代数学奠基时期的总结。李淳风等注释保存了许多宝贵资料,但注释水平并不高。由于种种原因,算学馆实际未培养出像样的数学家。

数学的高潮

经过盛唐的大发展,唐中叶之后,生产关系和社会各方面逐渐产生新的实质性变革,到10世纪下半叶,赵匡胤建立宋朝,统一中国,中国封建社会进入了另一个新的阶段,土地所有制以国有为主变为私有为主,租佃农民取代了魏唐的具有农奴身份的部曲、徒附。农业、手工业、商业和科学技术得到更大发展。中国古代四大发明,有三项——印刷术之广泛应用及活字印刷,火药用于战争,指南针用于航海——完成于唐中叶至北宋。宋秘书省于元丰七年(公元1084年)首次刊刻了《九章算术》等十部算经(时《夏侯阳算经》、《缀术》已失传,因8世纪下半叶一部韩延《算术》开头有“夏侯阳曰”云云而误认为是前者而刻入,后者只好付之阙如),是世界上首次出现的印刷本数学著作。后来南宋数学家鲍澣之翻刻了这些刻本,有《九章算术》(半部)、《周髀算经》、《孙子算经》、《五曹算经》、《张丘建算经》五种及《数术记遗》等孤本流传到现在,是世界上传世最早的印刷本数学著作。宋元数学家贾宪、李冶、杨辉、朱世杰的著作,大都在成书后不久即刊刻。数学著作借助印刷术得以空前广泛的流传,对传播普及数学知识,其意义尤为深远。

宋元数学高潮早在唐中叶已见端倪。随着商业贸易的蓬勃发展,人们改进筹算乘除法,新、旧《唐书》记载了大量这类书籍,可惜绝大多数失传,只有韩延(生平不详)《算术》(8世纪)以《夏侯阳算经》的名义流传下来,该书提出了若干化乘除为加减的捷算法,并在运算中使用了十进小数,极可宝贵。

11世纪上半叶贾宪(生平不详)撰《黄帝九章算经细草》,是为北宋最重要的数学著作。贾宪曾任左班殿直(低级武官),是当时著名天文学家、数学家楚衍的学生。还著有《算法古集》二卷,已佚。他将《九章算术》未离开题设具体对象甚至数值的术文大都抽象成一般性术文,提高了《九章算术》的理论水平;他对某些类型的数学问题进行概括,比如提出开方作法本源即贾宪三角,作为他提出的立成释锁(即开方)法的算表,这是开方问题的纲;他提出了若干新的重要方法,其中最突出的是创造增乘开方法,并提出了开四次方的程序。贾宪的思想与方法对宋元数学影响极大,是宋元数学的主要推动者之一。《黄帝九章算经细草》因被杨辉《详解九章算法》抄录而大部分保存了下来(阙卷一、二及卷三上半部,卷五的一部分)。

大科学家沈括(公元1031—1095年)对数学有独到的贡献。在《梦溪笔谈》中首创隙积术,开高阶等差级数求和问题之先河,又提出会圆术,首次提出求弓形弧长的近似公式。

12世纪北宋刘益(生平不详)撰《议古根源》,亦失传。杨辉《田亩比类乘除捷法》引用了它的若干题目与方法。《缀术》失传之后,开方式的系数仍皆为正数,刘益突破了这个限制,首先引入负系数方程,并创造了益积开方术与减从开方术求其正根,杨辉誉之为“实冠前古”。

1127年金朝入主中原,赵宋南迁,史称南宋。1234年,蒙古贵族灭金,后来建立元朝。1279年元灭南宋,占领中国。13世纪中叶至14世纪初,是宋元数学高潮的集中体现,也是中国历史上留下重要数学著作最多的半个世纪,并形成了南宋统治下的长江中下游与金元统治下的太行山两侧两个数学中心。

南方中心以秦九韶、杨辉为代表,以高次方程数值解法、同余式解法及改进乘除捷算法的研究为主。北方中心则以李冶为代表,以列高次方程的天元术及其解法为主。元统一中国后的朱世杰,则集南北两个数学中心之大成,达到了中国筹算的最高水平。

1247年秦九韶撰成《数书九章》18卷。秦九韶,字道古,自称鲁郡(今山东省)人,约1202年生于普州安岳县(今四川省)。他天资聪明好学,对数学、天文、土木建筑、诗词、音律、弓马等都十分精通。他多次呼吁统治者施仁政,并把数学知识看成开源节流、施仁政、利国利民的有力工具。《数书九章》分大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易九类81题,其成就之大,题设之复杂都超过以往算经,有的问题有88个条件,有的答案多达180条,军事问题之多也是空前的,反映了秦氏对抗元战争的关注。大衍总数术系统解决了一次同余式组解法;正负开方术把以增乘开方法为主导的求高次方程正根的方法发展到十分完备的程度,有的方程高达十次;线性方程组解法完全以互乘相消法取代直除法;提出了与海伦公式等价的三斜求积公式;使用了完整的十进小数表示法,等等,都是其杰出成就。

杨辉共撰五部数学著作,传世的有四部,居元以前数学家之冠。杨辉,字谦光,钱塘(今杭州市)人,生平不详,只知在今江浙一带管钱粮,为政清廉。与其他大家比较,他的著作偏重于教育与普及。1261年,杨辉在刘徽注、李淳风等注释、贾宪细草的《九章算术》基础上作解题、比类,并补充了图、乘除、纂类三卷,是为《详解九章算法》,今图、乘除、方田、粟米、衰分上半部、商功之一部分已佚。商功章的比类中的垛积术发展了沈括的隙积术;“纂类”则打破了《九章算术》的分类格局,按方法分成乘除、互换、合率、分率、衰分、叠积、盈不足、方程、勾股九类。1262年又撰《日用算法》,着重于改进乘除捷算法,只有少量题目保存下来。1274年撰《乘除通变本末》三卷。卷上的“习算纲目”是一个从启蒙到《九章》主要方法的数学教学计划。本书还总结了九归等乘除捷算法及其口诀。次年编纂《田亩比类乘除捷法》二卷,引用了刘益的方法与题目,批评了《五曹算经》四不等田求法的错误。同年,编纂《续古摘奇算法》二卷,对纵横图即幻方研究颇有贡献。后三部书又常合称为《杨辉算法》。

十二、十三世纪,北方出现了许多天元术著作,大都失传,流传至今的最早的以天元术为主要方法的著作是李冶的《测圆海镜》12卷(公元1248年)、《益古演段》三卷(公元1259年)。李冶(公元1192—1279年),字仁卿,号敬斋,真定栾城(今河北省)人,生于大兴(今北京市)。其父为官清廉正直,李冶自幼受到良好的教养,且爱好数学,青年时便成为名重中原的学者,金词赋科进士。入元,遂隐居于忻、崞〔guo郭〕(今山西省北部)一带,在极为艰苦的条件下研究数学及各种学问,常粥[sh上髟下乙]〔zhan毡〕不继,而聚书环堵。他一生文史著述颇多,仅存《敬斋古今黈》。《测圆海镜》在洞渊九容基础上考虑了勾股形与圆的10种基本关系,在卷二一十二中就15个勾股形与圆的关系提出了170个求圆径长的问题,答案当然都相同。这些问题大都要用天元术列出方程。卷一是全书的理论基础,包括圆城图式、识别杂记等部分。圆城图式以天、地、乾、坤等汉字表示点,是个创举。识别杂记提出692条公式,除八条外都是正确的,集历代勾股形与圆的关系研究之大成。《益古演段》64问,这是一部用天元术阐释蒋周(可能是北宋人)《益古集》的方程列法的著作。其中保存了《益古集》的若干题目和旧术(方法)。

朱世杰有两部重要著作《算学启蒙》(公元1299年)、《四元玉鉴》(公元1303年)传世。朱世杰,字汉卿,号松庭,燕山(今北京市)人,生平不详。他在13世纪末以数学名家周游全国20余年,向他学习数学的人很多。《算学启蒙》20门,259问,包括了从乘除及其捷算法到增乘开方法、天元术等当时数学各方面的内容,形成了一个较完整的体系。《四元玉鉴》24门,288问,卷首给出古法七乘方图(改进了的贾宪三角)等四种五幅图,以及天元术、二元术、三元术、四元术的解法范例。创造四元消法,解决了多元高次方程组问题,以及高阶等差级数求和问题,高次招差法问题,是本书最大的贡献。此书是中国古代水平最高的数学著作。

杨辉、朱世杰等人对筹算乘除捷算法的改进、总结,导致了珠算盘与珠算术的产生(大约在元中叶),完成了我国计算工具和计算技术的改革。元中后期,又出现了《丁巨算法》、贾亨《算法全能集》、何平子《详明算法》等改进乘除捷算法的著作。

艰难的复兴

元中叶之后,中国数学急剧衰落,元末的几部著作只是对乘除捷算法有所改进。明永乐年间(公元1403—1425年)修《永乐大典》,将前此的中国数学著作按起源、各种数学方法及音义、纂类等分类抄录。汉唐宋元数学著作在明代大都散佚,清中叶修《四库全书》,中国古算书多赖此重新面世。

明代八股取士,思想禁锢严重,学者们很少留心数学。顾应祥、唐顺之是明代数学大家,全然不懂天元术和增乘开方法。景泰元年(公元1450年)吴敬撰《九章算法比类大全》十卷,收集历代应用题,亦抛弃了增乘开方法和天元术。元明之后,随着筹算捷算法的完备,珠算术产生并得到普及,明朝出现了一批有关珠算的著作。其最著者为程大位的《算法统宗》(公元1592年),凡17卷,595问。此书适应商业发展的需要,以珠算为主要计算工具,并载有珠算开方法。此书在以后二、三百年问被多次翻刻、改编,流传之广是罕见的。程大位,字汝思,号渠宾,休宁(今黄山市屯溪区)人,曾在长江中下游地区经商,注意收集算经和数学问题,晚年撰成此书。

16世纪末,利玛窦等欧洲传教士来华,与徐光启等一起翻译《几何原本》等著作。后来,传教士们又引入了三角学、对数等西方初等数学,从此,中国数学开始了中西会通的阶段。清朝260余年,留下数学著作极多,都在不同程度上融会中西数学。

清宣城梅文鼎(公元1633—1721年)潜心于中西数学研究,著述甚多,其孙梅瑴成将他的著作编辑成《梅氏丛书辑要》60卷,其中数学著作13种40卷,内容遍及当时中国数学的各个门类,对清朝数学影响极大。

康熙皇帝爱好数学,他御定由梅瑴成、何国宗、明安图、陈厚耀等编纂的《数理精蕴》53卷,全面系统地介绍了当时传入的西方数学知识。上编立纲明体,为数理本源、几何原本、算术原本等五卷;下编分条致用,为实用数学和借根方比例,以及对数、三角函数等40卷,表4种8卷,同样对清朝数学产生了巨大影响。此书于雍正元年(公元1723年)印行。

1723年,雍正帝即位,认为传教士不利于自己的统治,除少数供职于钦天监者外,将传教士悉数赶到澳门。此后,西学的传入遂告一段落,中国数学家一方面消化前此传入的数学知识,一方面忙于整理中国古典数学著作。

1773年乾隆帝决定修《四库全书》,戴震(公元1724—1777年)从《永乐大典》中辑出《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《五曹算经》、《五经算术》以及赝本《夏侯阳算经》等七部汉唐算经,并加校勘,《数书九章》、《测圆海镜》、《四元玉鉴》等久佚的宋元算书也陆续辑出或发现,从此掀起了乾嘉时期(公元1736—1820年)研究整理中国古典数学的热潮。古书注释以李潢(?—公元1812年)《九章算术细草图说》、罗士琳(公元1789—1853年)《四元玉鉴细草》影响较大。而开创性的研究则以焦循(公元1763—1820年)《里堂学算记》、汪莱(公元1768—1813年)《衡斋算学》、李锐(公元1768—1817年)《李氏算学遗书》最为有名。

18世纪初,法人杜德美(公元1668—1720年)传入牛顿、格雷果里创造的三个三角函数的级数展开式。后来,三角函数和对数函数展开式的研究成为中国数学家的重要课题。明安图(17世纪末至18世纪60年代)、董祐诚(公元1791—1823年)、项名达(公元1789—1850年)、戴煦(公元1805—1860年)等都作出了杰出贡献。李善兰(公元1811—1882年)的《方圆阐幽》、《弧矢启秘》、《对数探源》(公元1845年)在三角函数与对数函数的研究上取得了更大的成就。他创造的尖锥术提出了几个相当于定积分的公式,在接触西方微积分思想之前独立地接近了微积分学。李善兰,字壬叔,号秋纫,浙江海宁人。幼年即嗜好数学,30余岁即获创造性成果。

1840年,列强用大炮轰开了清朝闭关自守的大门,西方数学以前所未有的规模大量传入。1852年李善兰到上海,与英国传教士伟烈亚力(公元1815—1887年)合译《几何原本》后九卷、《代数学》13卷、《代微积拾级》18卷等许多西方数学著作,后者是中国第一部微积分学译著。后来,华衡芳(公元1833—1902年)与英人傅兰雅合译了《代数术》、《微积溯源》、《三角数理》、《决疑数学》等书,后者是中国第一部概率论译著。他们创造的许多术语至今还在使用。李善兰还融会中西,著述颇丰。《椭圆正术解》等四种是关于圆锥曲线的研究,《级数回求》等是关于幂级数的研究,而《垛积比类》则在朱世杰基础上系统解决了高阶等差级数求和问题,并提出了著名的李善兰恒等式。1872年撰《考数根法》,证明了费尔马小定理,提出了素数判定法则。他的著作汇集为《则古昔斋算学》,包括14种科学著作。李善兰是开展现代数学研究的第一位中国数学家。然而,总的说来,时处清末,经济衰落,社会动荡,有志于现代数学的人没有与现代工程技术结合的条件,不可能有大量可观的成果,而士大夫阶层更多的人抱有西学为我中华所固有的偏见,不求甚解。此后不久,尤其是维新变法和新文化运动之后,中国古代数学传统基本中断,中国数学研究纳入了统一的现代数学。

中国古代数学曾经非常辉煌,虽然有些典籍已经遗失。但现存的著作依旧让我们不禁感叹古代数学家的聪明才智。20世纪是中国数学复兴的世纪,人们期待,在下个世纪中国将重新取得数学大国的地位。


我国古代数学取得哪些成就?距离微积分发明有多远?==>

导语:之前发表了一些关于微积分方面的文章,很多网友都在对阿基米德、牛顿、欧拉、高斯等数学大神佩服的五体投地,感慨欧洲的那些数学家们简直是神一样的存在,与此同时有一些网友问到:我国古代数学在微积分方面有哪些贡献?他们是否摸到了微积分的门槛?下面我们主要谈一下我国古代微积分思想的萌芽和发展以及微积分在中国的传播,带你了解这段尘封的数学史!

先秦时期极限思想的萌芽

说到微积分思想的萌芽,首先要提到就是极限的思想的萌芽,因为整个微积分都是建立在极限的思想基础上。

我国在极限的思想上萌芽最早可追溯到公元前7世纪,老子和庄子哲学思想和著作中包含了无限可分性和极限思想的理论。

我国古代数学取得哪些成就?距离微积分发明有多远?

庄子

庄子在其著作《庄子.天下篇》中提出的:“一尺之棰,日取其半,万世不竭”。这句话蕴含着无限可分的思想,也是最早的极限思想的萌芽。

老子在《道德经》第四十二章提出:“道生一,一生二,二生三,三生万物”。这句话蕴含着无限的思想,体现了一种动态的趋近过程。

我国古代数学取得哪些成就?距离微积分发明有多远?

老子

公元前4世纪墨子在其著作《墨经》中提出了关于有穷、无穷,无穷大、无限可分和极限的早期概念。这些概念分散于自然哲学、数学、伦理等学科的条目中。如:

【经上41】:穷,或有前不容尺也。

【经说上】穷:或不容吃,有穷;莫不容尺,无穷。

意思是:所谓“穷”,就是相当于用尺子去度量区域时遇到前面容不下尺子的情况。这时连一尺也容不下了,就叫“有穷”;无论怎么度量总是遇不到这种情况,就叫“无穷”。

【经下】73:无穷不害兼,说在盈否。

【经说下】无:南者有穷则可尽,无穷则不可尽;有穷、无穷不可智,则可尽不可尽亦未可智;……..

《墨经》中以上内容包含了无穷的思想,也是最朴素的、最典型的极限思想。《墨经》这部著作包括光学、力学、逻辑学、几何学、工程技术知识和现代物理学等内容,其中讨论的几何概念可以看作数学理论研究在中国的最初尝试。

我国古代数学取得哪些成就?距离微积分发明有多远?

墨子

以上是我国古代最朴素的极限思想的萌芽,到了魏晋南北朝时期,极限思想有了更进一步的发展,最具代表性的人物有:刘徽、祖冲之和祖暅。

极限思想的进一步发展

刘徽是魏晋时期伟大的数学家,也是在中国数学史上最伟大数学家,他最为杰出的著作是《九章算术注》和《海岛算经》,这两部著作在我国历史上具有非常重要的地位。

刘徽在《九章算术注》中利用“割圆术”计算圆面积,用”圆内接正多边形的面积”来无限逼近”圆面积”。

“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”——刘徽

我国古代数学取得哪些成就?距离微积分发明有多远?

刘徽割圆术

刘徽的割圆术与阿基米德的割圆术思想是一致的,这两位伟大的天才,尽管他们天各一方、时隔数百年,但却有完全相同的方法。

我国古代数学取得哪些成就?距离微积分发明有多远?

刘徽

古希腊的阿基米德算到了正96边形,但是刘徽并没有就此止步,他一直算到3072边形,虽然他略去了计算过程,但是为我们写下了下面的结果:

我国古代数学取得哪些成就?距离微积分发明有多远?

刘徽利用割圆术将圆周率的计算精确到小数点四位,在没有计算器的年代,这个运算量可想而知,或许刘徽是人类历史上第一个发现了我们现在所用的圆周率的近似值。他的极限理论和无穷小方法在当时世界是最先进的,这种微积分思想直到17世纪初才在西方国家有了初步的发展。

刘徽之后,祖冲之和他的儿子暅对刘徽的数学思想和方法进行了推广和发展。祖冲之是我国南北朝时期杰出的数学家、天文学家和无学家,他算出了圆周率数值的上下限:3.1415926(肭数)<π<3.1415927(盈数)。

我国古代数学取得哪些成就?距离微积分发明有多远?

祖冲之

祖冲之的结果对于我国乃至世界都是一个超越前人的光辉成就,是圆周率计算的一个飞跃。祖冲之是最早把圆周率推算到小数点后7位的数学家,所以我们把圆周率命名为“祖冲之圆周率”,简称“祖率”

祖冲之的儿子祖暅沿用了刘徽的思想,利用”牟合方盖”的理论去进行体积计算,得出”幂势相同,则积不容异”的结论。”势”即是高,”幂”是面积。

  • 出入相补原理
  • 祖氏原理:幂势既同,则积不容异。

我国古代数学取得哪些成就?距离微积分发明有多远?

用祖暅原理计算球的体积

祖暅原理包含了求积的无限小方法,这种方法是积分学的重要思想,也是我们今天高等数学课本上提到的“微元法”的思想。这一原理”在西方国家被称为“卡瓦列里原理”,是由意大利数学家发现的,但是卡瓦列里发现这一结果比祖冲之父子晚了一千多年。

以上宋朝之前我国古代数学积分思想的萌芽,下面来看一下宋朝的数学家在微积分方面的贡献。宋代数学是我国古代数学发展的巅峰,涌现出了许多著名的数学家,如北宋的沈括和贾宪以及南宋的杨辉和秦九昭等人。

沈括是北宋政治家、科学家,他的代表作《梦溪笔谈》集前代科学成就之大成,在世界文化史上有着重要的地位,被称为“中国科学史上的里程碑”。他创立的“隙积术”,“会圆术”,“棋局都数术”等数学方法就可以体现到当时对高阶等差级数求和理论的深入研究。

我国古代数学取得哪些成就?距离微积分发明有多远?

会圆术

沈括的“会圆术”包含了“以直代曲”的微元法的思想,所谓会圆术是指由弦求弧的方法,其主要思路是局部以直代曲会圆术示意图,对圆的弧矢关系给出一个比较实用的近似公式:

我国古代数学取得哪些成就?距离微积分发明有多远?

贾宪是我国北宋天文学家和数学家,他的数学成就是创造了贾宪三角和曾乘开方法,贾宪三角比法国的帕斯卡三角早了600年。

我国古代数学取得哪些成就?距离微积分发明有多远?

增乘开方法是求高次幂的正根法,贾宪提出的方法比传统的方法更简单快捷,他的这一方法比欧洲数学家霍纳的结论早700多年。

杨辉在其著作《详解九章算法》一书中给出的”开方做法本源”,即杨辉三角(也就是贾宪三角)这一结论是二项式系数在三角形中的一种几何排列。

秦九韶在其具有划时代意义的《数书九章》中提到了“大衍求一术”、“正负开方术”,所谓“大衍求一术”(又称中国剩余定理)是用来求解一次同余组问题,而正负开方术是求解任意高次方程的数值解法,这些都是中世纪世界数学的最高成就。

我国古代数学取得哪些成就?距离微积分发明有多远?

秦九昭

不可否认两宋时期,是我国经济和社会发展的巅峰,我们的很多技术在当时世界上处于领先地位,数学发展也达到了顶峰。但是那个时期的数学都是基于解决实际问题,或者说对数学的研究并没有上升的理论层面。虽然我国很早就有了极限思想的萌芽,沈括的“会圆术”包含了微积分的一些思想,但与微积分的诞生还隔着很遥远的距离。

西方微积分思想的传播

西方数学知识在中国的传播始于明朝后期,欧洲的传教士在传播宗教的同时还带来了一些科学知识。来自意大利的利玛窦是天主教在中国传教的最早开拓者之一。明朝万历年间,利玛窦来到中国传教,他带来了欧洲数学,向中国人推开了一扇面向欧洲和世界的窗户。

我国古代数学取得哪些成就?距离微积分发明有多远?

油画《利玛窦与徐光启的文化盟约》

利玛窦带来的数学知识中包括大名鼎鼎的《几何原本》,1607年,我国著名数学家徐光启和利玛窦将《几何原本》的前6卷的平面几何部分翻译成中文,并命名为《几何原本》,这本书出版后引起了巨大的反响,成为明末从事数学工作的人必读的一部书。

我国古代数学取得哪些成就?距离微积分发明有多远?

徐光启和利玛窦翻译的《几何原本》

在雍正之前,洛必达的《无穷小分析》、欧拉的《无穷分析引论》等数学著作已经由传教士带到了中国,但由于各种原因,这些著作和知识并没有传播开来。

微积分在中国最早的传播人是我国清代的数学家李善兰(1811-1882),他从小就喜欢数学,10岁时就偷偷自学了古代数学名著——《九章算术》,并将全书的426道例题全部解出,这大大增加了他对数学的兴趣。李善兰在15岁的时候又迷上了徐光启和利玛窦合译的《几何原本》,他为后面更为深奥的几卷没有译出感到非常的遗憾,暗下定决心要把后几章翻译出来并出版。

我国古代数学取得哪些成就?距离微积分发明有多远?

左:李善兰 右:伟烈亚力

后来李善兰到了墨海书院,他与英国传教士伟烈亚力合作将《几何原本》的第七至十三卷译出来并于1858年正式出版。但伟烈亚力并不满足于现状,他希望继续出版更多的数学知识教材。李善兰和伟烈亚力先后合译并出版的著作有:《几何原本》13卷、《代数学》13卷、《代微积拾级》18卷、《谈天》18卷;与此同时,他与艾约瑟合译《重学》20卷、《圆锥曲线说》3卷;他还与伟烈亚力、傅兰雅合译了牛顿的名著《自然哲学的数学原理》若干卷。

我国古代数学取得哪些成就?距离微积分发明有多远?

《代微积拾级》

《代微积拾级》的出版在中国的科学发展史上具有里程碑意义,它标志着西方近现代数学开始在古老的华夏大地上传播。《代微积拾级》一直都是很多书院和学堂的数学教材,许多国产教材都是以这本书为蓝本的,正是此书将微积分真正的带入了中国,极大地促进了中国近现代数学的发展。

再写最后

纵观我国古代数学家的各种成就不难发现:虽然我国很早就有了极限思想的萌芽,虽然我国在宋代达到了古代数学的巅峰,有些结果比欧洲早了几百年甚至上千年,但是中国古代对数学的研究都是基于解决实际问题的计算问题,未能从具体问题的计算过程中抽象出更一般的概念和方法,很多问题都没有上升到理论层面,因此,更确切地说我国古代数学其实是算术。所以,尽管我国在早期数学方面取得了一些成就,但是就微积分的发明来说还有很大一段的距离,没有哪个数学家真正接近微积分的大门。

反观欧洲的那些数学家们,在牛顿和莱布尼茨创立微积分之前,阿基米德、笛卡尔、费马、巴罗、沃利斯等微积分先驱,就已经从不同的方向逼近了微积分的大门,只不过他们的方法缺乏一般性,从而导致他们都没有完成对微积分的发明。这个时需要有人站在更高的高度来统一这些分散的理论,牛顿和莱布尼茨正是在这个时刻出场的,时代的需求和个人的才智,使他们完成了微积分创立中最后一步也是最关键的一步。

发表回复